

ORAC: An RDF/OWL metadata store
using MySQL for persistence,

Java servlets for interface,
and Jena for modeling

Steven E. Matuszek

A paper submitted to the
Computer Science Electrical Engineering Department

in partial fulfillment of the requirements for the M.S. degree at
University of Maryland Baltimore County

December 7, 2003

some revisions March 7, 2004

Abstract

While much of the promise of the Semantic Web lies in creators describing their own
content, much of it surely also lies in the ability to describe other people’s content. Since
these descriptions cannot be attached to the content, a centralized server for metadata is
needed. Further, a Web-based front end is needed to allow the largest number of people to
contribute metadata. Jena is an open-source toolkit from HP Labs that provides a Java API
for RDF models, and that implements persistence through a relational database. This project
undertakes to create Java servlets that can present a familiar Web-based interface to users,
accept arbitrary RDF schemas, store corresponding RDF metadata, expose the metadata as
HTML or as RDF/XML, and perform simple queries and inference.

Contents

Introduction to the problem domain
 Semantic Web

RDF
 RDF Schema
 OWL

Introduction to the architecture
 Jena
 Servlets
 MySQL

Description of Orac’s four-story design

Teach Orac Ideas
Method for automatically generating HTML forms from RDF Schema
 How vCard breaks down
 How well this works for other schemas

Tell Orac Facts
Method for generating statements from the generated forms

 Method for pruning useless statements

Ask Orac Questions

Maintain Orac

Conclusions and Future Work

References

Appendices

Introduction to the problem domain

The easiest way for the Semantic Web to come to fruition would be for everyone to just
learn RDF and start annotating their pages. After all, the author of a page knows best what
it represents. Then everyone could go back and annotate old pages, and images.

But pages get deep-linked to, causing startled Old Economy companies to file lawsuits.
Copyrighted images get found, and stolen, using Google Image Search.

Worst of all may be creators that do want their content to be found. These creators are
likely to lie in their metadata. How long was AltaVista an effective search engine before
people were putting hundreds of keywords in their META tags?

Thus, we cannot exclusively rely on content creators to provide metadata.

A combination of creator-supplied metadata and community-supplied metadata is probably
the answer. Google’s PageRank algorithm is widely known to consider both (the community-
supplied metadata being how many people link to a resource, in what contexts). [18]

If you collect enough metadata, and run inference rules over them, you might even get
intelligent-seeming conclusions. Paul Ford writes in a news article—a news article set in
2009—

So the guess has always been that you need a whole lot of syntactically stable
statements in order to come up with anything interesting. In fact, you need a whole
brain's worth—millions. Now, no one has proved this approach works at all, and the #1
advocate for this approach was a man named Doug Lenat of the CYC corporation, who
somehow ended up on President Ashcroft's post-coup blacklist as a dangerous
intellectual and hasn't been seen since. [5]

AI in-jokes aside, we agree that a critical mass of collaborative filtering is crucial to having
worthwhile metadata. Ford cites eBay (user feedback), Amazon (user reviews), and Google
(zeitgeist authority designation).

RDF, or Resource Description Framework, appears to be an excellent starting point for this.
It is a knowledge description language, but with the added wrinkles that anyone with a Web
server can contribute their own ontologies of properties using RDF Schema, and that all
subjects of statements must be represented by a URI (Uniform Resource Identifier). This
doesn’t necessarily mean a computer-retrievable URL, but every URL is a URI, so it’s easy to
make statements about a Web page or image, and only a short leap to people, places, and
so forth.

Introduction to the architecture

The original Orac was an artificial intelligence that appeared in the BBC science fiction series
Blake’s 7. It had a unique ability to retrieve data from any computer that utilized the “Tarial
cell” architecture, which was every computer in the Federation [15]. This would make it
very powerful, but it would also raise serious privacy concerns.

My Orac is a collection of Java servlets that interact with the Jena API, which is backed by a
MySQL relational database management system, on a Red Hat Linux 9.0 server running the
Apache Tomcat Web server and servlet engine. I will discuss each of these components.

Linux, Apache, and MySQL

All this software is free, and all of it except Java is open source. Has there been a grassroots
content revolution since desktop publishing in which people had to pay for the software?

Clark [4] points at RSS and FOAF, two applications of RDF, as vehicles that will help to get
the open source community involved in the Semantic Web, despite its lack of interest in
artificial intelligence or information retrieval per se.

Java servlets

Servlets are a server-side technology. Once invoked by the Web server’s servlet container,
they stay in memory, which makes them very efficient for maintaining connections to
databases, or to other back-end resources such as an RDF store. And because they are
written in Java, they have full-featured control logic, abstract data structures, strong typing,
and can utilize any Java API, be it academic, enterprise, or open-source. Naturally, the
Servlet API provides special functions for handling form submissions and other HTTP events,
and it is all hidden from the user, who sees only pure generated HTML.

Why is this important? The pure Web is the most effective means of collecting information.
No Java applets, no downloaded toolbars, just input fields and clickable links. The higher the
startup cost of your process, the less it is taking advantage of an immeasurable resource:
other people’s time.

Jena

Jena is an open-source RDF toolkit written in Java. As such, it can be combined with a Web-
based front end easily. All of the building blocks of RDF are first-class citizens in Jena:
classes include Model, Resource, Property, Statement, and Literal. More, they are
related in all the appropriate ways: Model.listStatements() returns a collection of
Statements, Statement.getSubject() returns a Resource, which has methods like
getURI(), Statement.getObject() returns an RDFNode which can be either a
Resource or a Literal, and so forth.

Orac’s four-story architecture

The front page of Orac presents the user with four user stories [17]:

Teach Orac ideas

We’ll begin here, although it is unlikely to be the most comfortable choice for the beginning
user. When we speak of teaching Orac ideas, we refer to making it aware of new RDF
properties that it can store. This is done by providing it with an RDF Schema.

One might think that interpreting an RDF Schema would be relatively straightforward, but in
fact it can be quite difficult. I took as my model the vCard schema, which is a common
example domain for RDF. Some of its properties are simple:

<rdf:Description ID="NICKNAME">
 <rdf:type
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
 <rdfs:label>Nickname</rdfs:label>
</rdf:Description>

quite naturally results in triples of the form

<JohnSmith vCard:NICKNAME “J-Dog”>,

but the canonical instantiation [8],[13] of the vCard:N property is that its substructure is
preserved by having an anonymous node as its argument, which in turn has the properties
vCard:Given, vCard:Family, etc:

<JohnSmith vCard:N anon0>
<anon0 vCard:Given "John">
<anon0 vCard:Family "Smith">

This is represented in the schema by vCard:N having a range of #NPROPERTIES, of which
vcard:Given, vCard:Family, etc. declare themselves to be subclasses.

The range of the telephone number property, TEL, is TELTYPES. (This is in fact an
unqualified URI, being neither fully qualified nor #local. The model that we store is a
cleaned-up version of the original schema; I have a method that goes through and fixes the
unqualified URIs.) TELTYPES does not have subclasses as does NPROPERTIES; instead it
has several instances:

<rdf:Description ID="TEL">
 <rdf:type
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
 <rdfs:label>Telephone</rdfs:label>
 <rdfs:range rdf:resource="#TELTYPES"/>
</rdf:Description>

<rdfs:Class rdf:ID="TELTYPES"/>
 <TELTYPES rdf:ID="home"/> <TELTYPES rdf:ID="msg"/>
 <TELTYPES rdf:ID="work"/> <TELTYPES rdf:ID="fax"/>
 <TELTYPES rdf:ID="cell"/> <TELTYPES rdf:ID="video"/>
 <TELTYPES rdf:ID="pager"/> <TELTYPES rdf:ID="bbs"/>
 <TELTYPES rdf:ID="modem"/> <TELTYPES rdf:ID="car"/>
 <TELTYPES rdf:ID="isdn"/> <TELTYPES rdf:ID="pcs"/>

resulting in these sample triples, which have a TELTYPE as their rdf:type and a literal for
an rdf:value:

<JohnSmith vCard:TEL anon1>
 <anon1 rdf:value "615-788-4467">
 <anon1 rdf:type vCard:work>
<JohnSmith vCard:TEL anon2>
 <anon2 rdf:value "301-232-3232">
 <anon2 rdf:type vCard:home>

The ADR property is the most entangled of all, having a range of ADRTYPES, which like
TELTYPES has several instances, and which has a subclass ADRPROPERTIES, which like
NPROPERTIES has subclasses Pobox, Street, Country, and so forth, which we presume
to take as component parts of an address, just as family name, given name et al. are
component parts of a name.

<JohnSmith vCard:ADR anon3>
 <anon3 rdf:type vCard:home>
 <anon3 vCard:Street "111 Lake Drive">
 <anon3 vCard:Locality "Malvern">

<JohnSmith vCard:ADR anon4>
 <anon4 rdf:type vCard:work>
 <anon4 vCard:Street "1000 Hilltop Circle">
 <anon4 vCard:Locality "Catonsville">

The conclusion is that if a property’s range has subclasses, we should assume them to be
component parts of the property (such as Street-Locality-Region-Country), and if a
property’s range has instances, we should assume them to be different instances of the
property (cell phone, work phone, home phone, etc.)

This is of interest because we would like to automatically generate forms for the end user to
fill out, and he is not going to want to understand all about anonymous nodes. A hand-
crafted form would naturally combine subclasses (given name, family name) into a
grouping, and make multiple copies of an input for multiple instances of a property (cell
phone, work phone). The hand-crafter would also be likely to intuit much of the semantics
of the schema, such as that most people do not have more than one first name.

Thus, we need an algorithm for generating the fields, correctly grouped and/or duplicated.

The problem is that an HTML form is simply a bag of inputs, with no hierarchical structure.
The author of the form could put related fields together for the user, but the servlet would
be getting all the objects, half the predicates, and only one of the subjects.

The necessary insight turned out to be to record the notional anonymous nodes that were
our spirit guides as we grouped inputs together. Along with every visible input, I put two
hidden inputs defining the subject (whether it be the protagonist of the data entry or an
anonymous node) and the property (whether it be a property from the local schema or a
property from RDF/RDFS). Two integer variables allow us to sequentially number the
statements and the anonymous nodes.

The final algorithm:

X = 0; // for naming statements
Y = 0; // for naming nodes

Read in all the properties ?property from the RDF Schema

--- start table (a)

For each ?property
{
 --- start row (a)

 if ?property is a subclass of something else
 {
 Skip it
 // it presumably is a component of another property
 }
 else if ?property has no range
 {
 make a label ?property.label

 make a hidden-input [subject_X = "root"]
 make a hidden-input [predicate_X = ?property.uri]
 make an input [object_X = _____________]
 X++
 }
 else
 {
 get ?property's range as rangeResource

 find all Resources ?instance such that
 <?instance rdf:type rangeResource>

 find all Resources ?subprop such that
 <?subprop rdfs:subClassOf rangeResource>
 OR (<?subprop rdfs:subClassOf ?dummy> AND
 <?dummy rdfs:subClassOf rangeResource>)

 if (rangeResource has no ?subprops AND
 rangeResource has no ?instances)
 {
 // <subject PZ something>
 // <something rdf:type RZ>

 make a label ?property.label
 make a notice "Please enter an RZ."

 make a hidden-input [subject_X = "root"]
 make a hidden-input [predicate_X = ?property.uri]
 make an input [object_X = _____________]
 X++
 }
 else if (rangeResource has ?subprops AND
 rangeResource has no ?instances)
 {
 // <subject P0 anon1>
 // <anon1 SP0a value>
 // <anon1 SP0b value>
 // <anon1 SP0v value>

 make a label ?property.label

 make a hidden-input [subject_X = "root"]
 make a hidden-input [predicate_X = ?property.uri]
 make a hidden-input [object_X = "anon_Y"]
 X++

 --- start table (b)

 for each ?subprop
 {
 --- start row (b)

 make a label ?subprop.name

 make a hidden-input [subject_X = "anon_Y"]
 make a hidden-input [predicate_X = ?subprop.uri]
 make an input [object_X = _____________]
 X++

 --- end row (b)
 }
 Y++

 --- end table (b)
 }

 else if (rangeResource has no ?subprops AND
 rangeResource has ?instances)
 {
 // <root P1 anon2>
 // <anon2 rdf:type T1a>
 // <anon2 rdf:value value>
 // <root P1 anon3>
 // <anon3 rdf:type T1b>
 // <anon3 rdf:value value>
 // <root P1 anon4>
 // <anon4 rdf:type T1c>
 // <anon4 rdf:value value>

 make a label ?property.label

 --- start table (b)

 for each ?instance
 {
 --- start row (b)

 make a hidden-input [subject_X = "root"]
 make a hidden-input [predicate_X = ?property.uri]
 make a hidden-input [object_X = "anon_Y"]
 X++

 make a label ?instance.name

 make a hidden-input [subject_X = "anon_Y"]
 make a hidden-input [predicate_X = rdf:type]
 make a hidden-input [object_X = ?instance.uri]
 X++

 make a hidden-input [subject_X = "anon_Y"]
 make a hidden-input [predicate_X = rdf:value]
 make an input [object_X = _____________]
 X++

 Y++

 --- end row (b)
 }

 --- end table (b)
 }
 else if (rangeResource has ?subprops AND
 rangeResource has ?instances)
 {
 // <root P2 anon5>
 // <anon5 rdf:type T2a>
 // <anon5 SP2a value>
 // <anon5 SP2b value>
 // <anon5 SP2c value>
 // <root P2 anon6>
 // <anon6 rdf:type T2b>
 // <anon6 SP2a value>
 // <anon6 SP2b value>

 // <anon6 SP2c value>
 // <root P2 anon7>
 // <anon7 rdf:type T2c>
 // <anon7 SP2a value>
 // <anon7 SP2b value>
 // <anon7 SP2c value>

 make a label ?property.label

 --- start table (b)

 for each ?instance
 {
 --- start row (b)

 make a hidden-input [subject_X = "root"]
 make a hidden-input [predicate_X = ?property.uri]
 make a hidden-input [object_X = "anon_Y"]
 X++

 make a label ?instance.label

 make a hidden-input [subject_X = "anon_Y"]
 make a hidden-input [predicate_X = rdf:type]
 make a hidden-input [object_X = ?instance.uri]
 X++

 --- start table (c)

 for each ?subprop
 {
 --- start row (c)

 make a label ?subprop.label

 make a hidden-input [subject_X = "anon_Y"]
 make a hidden-input [predicate_X = ?subprop.uri]
 make an input [object_X = _____________]
 X++

 --- end row (c)
 }
 --- end table (c)
 Y++
 --- end row (b)
 }
 --- end table (b)
 }
 }
 --- end row (a)
}
--- end table (a)
make a hidden-input [total_statements = X]
make a hidden-input [total_nodes = Y]

The servlet at the other end has merely to create and store all the statements, starting at
<subject_0 predicate_0 object_0>. In fact, any form that supplies these as input
names can successfully submit to the StoreData servlet.

Further reflection reveals that that would still leave a lot of unneeded statements. What if
the user didn’t actually enter any telephone numbers? The model would include <root
vCard:TEL anon67> without anon67 having any useful properties. So the next step is to
prune these useless entities.

That algorithm can be summed up simply:

for each anonymous node ?a
 assume ?a is useless
 for each statement that has ?a as a subject
 if the property is not rdf:type
 ?a is not useless
 exit loop
 if ?a is still useless
 remove all statements with subject ?a
 remove all statements with object ?a

Tell Orac facts

Of course, we won’t get there until the user enters the data. The generated form could be
simple if generated from a straightforward schema like the Dublin Core:

or Byzantine, if generated from vCard or another complicated schema.

If the user clicks on Tell Orac facts, she gets her choice of the schemas that have already
been supplied to Orac through the Teach Orac ideas story. Saving the models saves a little
processing time, but not as much as saving the entire form would. It’s too long to save as a
Literal, and RDF Statements are the only way that we are maintaining any persistent state.

Orac explains to the user as much as possible about the nature of the information she is
entering. Only one Resource can be described in a single form, but she can always come
back and pick a different root URI.

Note in the screenshots that we allow the user to specify the name of the Model into which
he would like to store.

This allows each user to create his own experimental models, or to contribute to a larger,
more community-oriented share of metadata. Obviously, you would want some kind of real
security on this in a production setting.

Even a password would be a very binary form of security: you either can modify or you
can’t. A common theory for how to incorporate the ideas of others is a Web of Trust, in

which you can assign degrees of trust to other people or entities, and use those values to
decide whether to draw conclusions from their metadata [14]. Of course, trust is a loaded
term: a similar objective would be to track on a person-by-person basis how likely you are
to agree with their explicitly subjective tastes [1].

Another limitation on storing data is that it is not entirely idempotent. If you tell Orac that
<Eric loves candy> twice, it will not keep two copies of the statement. But if you tell
Orac a statement for which we had to generate an anonymous node, the second time you
do so, the anonymous node will be a different anonymous node. Even if the two anonymous
nodes have the exact same properties, they will be considered discrete.

Ask Orac a question

The user can take a look at the existing models that Jena has stored in the MySQL
database:

Each model can be viewed in three different ways. The RDF/XML view returns text/plain,
and can be accessed with a persistent(ish) URI, i.e.
http://matuszek.net:8000/servlet/net.matuszek.orac.ViewRDFModel?which_model=paula2,
so that automated tools can access it purely as data.

Models can also be viewed in a table of Subject Æ Property Æ Object triples, sorted by
Subject, or in an outline view that folds in the anonymous nodes:

http://matuszek.net/id/paula

1. (BDAY): "Nov 17, 1946"
2. (FN): "Dr. Paula Andre Matuszek"
3. (LABEL):

http://matuszek.net:8000/servlet/net.matuszek.orac.ViewRDFModel?which_model=paula2
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0

1. (type): http://www.w3.org/2001/vcard-rdf/3.0#home
2. (Country): "USA"
3. (Locality): "Malvern"
4. (Pcode): "19355"
5. (Region): "PA"
6. (Street): "205 Paoli Pike"

4. (N):
1. (Family): "Matuszek"
2. (Given): "Paula"
3. (Other): "Marie Andre"
4. (Prefix): "Dr."

5. (NICKNAME): "Paula"
6. (TEL):

1. (type): http://www.w3.org/2001/vcard-rdf/3.0#home
2. (value): "555-647-5555"

There is also a front end to a generic query of the statements in the model. The user can
match any statement in the model on Subject, Property, Object, or any combination
thereof. The servlet also goes through the model ahead of time and extracts all the
Subjects, Properties, and Objects that actually appear (and which are thus the only entries
that could result in a match), and puts them into pop-up menus (HTML <SELECT> inputs).
This might become inefficient when the model gets very large, but at this point it is not a
problem.

The result is displayed as an outline, and if necessary, more Statements are fetched from
the original model to flesh it out. It doesn’t do much good to learn that someone’s
telephone number is an anonymous node.

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns

Clearly, this is the aspect in which Orac has the furthest to advance. Conjunctions and
disjunctions of criteria would be simple to add.

OWL is expressed in RDF, and as such can be natively added to a Jena store. This would
permit us to use more advanced semantics such as

• transitive properties: given triples like <A RelatedTo B>, <B Relative C>,
correctly return both B and C when asked “A is RelatedTo ____?”

• inverse properties: given <w:Michelle vCard:PHOTO w:michelle.jpg>, match
on <w:michelle.jpg photo:Depicts w:Michelle>

• disjoint classes: know that statements <A rdf:type YankeesFan> and
<A rdf:type OriolesFan> cannot both obtain. [16]

Maintain Orac

Currently this story allows the user to see all the models (which he can also do from Ask
Orac Questions), and also to delete models, given a password.

Other administrative tasks slated to be added here are actions to merge models, remove
individual statements by hand, add individual statements by hand, and so forth.

Summary of important Java classes

• Tell

o EnterData
� This servlet checks what schemas are already present in the Jena store,

and allows the user to choose among them for data entry.
o LoadForm

� This servlet loads up a schema from the Jena store and displays the form
generated from it.

o StoreData
� This servlet takes the statements (in the form of inputs) passed to it by

LoadForm (or FormGenerator) and stores them in the specified persistent
model.

• Teach
o NewSchema

� This servlet explains RDF Schema to the user and accepts the URI of a
schema.

o FormGenerator
� This servlet accepts a schema URI from NewSchema, loads it into memory,

cleans it up, and displays the generated form.
o OracEcho

� This servlet accepts a schema URI and displays the generated model for
debugging purposes.

• Ask
o AskQuestions

� This servlet provides the user the choice of viewing or querying the
existing models.

o GenerateQuery
� This servlet allows the user to assemble a matching query against the

chosen model.
o AnswerQuery

� This servlet accepts the input from GenerateQuery, builds and runs the
requested query, and displays the results.

o ViewModel
� This servlet views the statements in a model in a Subject Æ Property Æ

Object table.
o ViewOutlineModel

� This servlet views a model in a tree structure, starting with non-
anonymous subjects and descending through both simple properties and
those that involve anonymous nodes.

o ViewRDFModel
� This servlet renders the selected model in machine-readable RDF/XML.

• Maintain

o Administrate
� This servlet allows the user to view or delete existing models. They need a

password to delete.
o DeleteModel

� This servlet attempts to delete the specified model, and displays the return
code from ModelPersistence.

• Utility
o ModelPersistence

� This utility class is a wrapper for all of the database backing of the stored
RDF models. It maintains the database connection, and its static methods
return existing models, create new models, delete existing models, and
save and return special system models such as stored RDF schemas.

o OracParser
� This class encapsulates most of our Jena utility methods. It fixes

unqualified URIs, generates HTML for many individual elements such as
Statements or Namespaces, and returns the RDFS metadata that don’t
already have methods in Jena, such as comments, subclasses, and labels.

o PrettyPrinter
� This class provides shortcuts for several HTML patterns that are used in

different places, and also the methods that generate outlines from models.
o SchemaToForm

� This is the class that takes in a schema and returns a form. It needed a
class all by itself.

Conclusions

Observations on the domain

I like RDF for describing other people’s resources, which is what this project was all about.

I found RDF Schema to be somewhat haphazard, vague and occasionally contradictory.
Different schema designers seemed to have little in common when it got more complicated
than simple properties. Even the designer of vCard acknowledges its kludginess:

"Even though the LABEL property has the same substructure defined by N and ADR, we
do not use them in specifying its value. This is because the value of LABEL is formatted
text that is not intended to be interpreted." [8]

W3C’s RDF Semantics working draft [6] couches it in terms of existential variables and
entailment, formal proof that is important, but that I don’t think helps in the trenches. The
RDF Primer [11] more helpfully notes that RDFS is not prescriptive as far as data typing,
which is probably what gave this Java programmer trouble.

Observations on the architecture

The longer you program in Java, the more any new technology—servlets, JDBC databases,
cryptography—becomes Just Another API.

You decide what object you need, you look at what objects you have, and you read the
javadocs to see what methods will get you there from here.

Of course, that is predicated on the API and the javadocs being complete and well written.
Jena 2.0 is very complete, its documentation well written for the most part, and it has good
redundancy. I learned more about RDF from programming in Jena than I did from reading
papers about it. McBride writes in An Introduction to RDF and the Jena RDF API:

Implementing too quickly, without first understanding the RDF data model, leads to
frustration and disappointment. Yet studying the data model alone is dry stuff and often
leads to tortuous metaphysical conundrums. [10]

Amen!

Future work

Of course, the questions being asked are simplistic at this stage. The original intent was to
allow inference-backed selection of images. OWL Lite would appear to be the right language
for this next step. Jena includes a plug-in reasoning layer, with prototype reasoners that
can, for example, generate corpuses of new statements through forward-chaining.

I’d like to refine form creation to allow the user to choose which of the possible inputs they
want. Rearranging the groupings would be hard to do intuitively in HTML, but one enormous
improvement would be to allow the user to specify how many of each input he even wants.
For example, ten copies of foaf:Knows, since everyone knows a lot of people, but zero
copies of vCard:LABEL, the property even its creators disavow.

We’d want to save the generated forms in some way. That much HTML is too large to save
as a Literal, alas. So it’s either talk to the MySQL server directly, or save onto the local
filesystem.

Final conclusion

RDF/RDFS has its limitations, but it seems to be a move in the right direction for the
Semantic Web. Jena is an outstanding tool, and I predict it will become the standard for RDF
application programming. Orac can’t yet look at pictures and tell me which ones are of
mammals, but it can read in arbitrary schemas, so any given ontology should not be too
hard to add. And it is persistently storing data. While it might not set the atmosphere on
fire, and I’d want to improve the security before letting in the general public, it already
permits a set of trusted people to share data and metadata without having to set up a
Yahoo! Group, which must surely be a worthy goal in itself.

References

[1] Joshua Allen, Making a Semantic Web: http://www.netcrucible.com/semantic.html

[2] Dan Brickley and R.V. Guha, RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Working Draft, http://www.w3.org/TR/rdf-schema/

[3] Dave Beckett, RDF/XML Syntax Specification (Revised), W3C Working Draft:
http://www.w3.org/TR/rdf-syntax-grammar/

[4] Kendall Grant Clark, A Web of Rules:
http://www.xml.com/pub/a/2003/10/23/iswc.html

[5] Paul Ford, How Google beat Amazon and eBay to the Semantic Web:
http://ftrain.com/google_takes_all.html

[6] Patrick Hayes, RDF Semantics, W3C Working Draft:
http://www.w3.org/TR/2003/WD-rdf-mt-20031010/

[7] Kevin Hemenway, The Semantic Web 1-2-3,
http://www.disobey.com/detergent/2002/sw123/

[8] Renato Ianella, Representing vCard Objects in RDF/XML, W3C Note:
http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222/

[9] The Jena javadoc: http://jena.sourceforge.net/javadoc/index.html

[10] Brian McBride, An Introduction to RDF and the Jena RDF API:
http://jena.sourceforge.net/tutorial/RDF_API/index.html

[11] Frank Manola and Eric Miller, RDF Primer, W3C Working Draft:
http://www.w3.org/TR/rdf-primer/

[12] Andy Seaborne, A Programmer’s Introduction to RDQL:
http://jena.sourceforge.net/tutorial/RDQL/index.html

[13] Ken Taylor, Address Book Samples:
http://mobile.act.cmis.csiro.au/sms2/xml/Address-Book-Samples.asp

[14] Aaron Swartz, The Semantic Web in Breadth:
http://logicerror.com/semanticWeb-long

[15] The Computers of Blake’s 7, DIVERSE UNIVERSE issue 13, 9/2002:
http://www.spacedoutinc.org/DU-13/ComputersBlake.html

[16] The Jena 2 Ontology API, http://jena.sourceforge.net/ontology/index.html

[17] Extreme Programming concept of User Stories,
http://www.extremeprogramming.org/rules/userstories.html

[18] Sergey Brin and Lawrence Page, The Anatomy of a Large-Scale Hypertextual Web
Search Engine, http://www-db.stanford.edu/~backrub/google.html

http://www.netcrucible.com/semantic.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.xml.com/pub/a/2003/10/23/iswc.html
http://ftrain.com/google_takes_all.html
http://www.w3.org/TR/2003/WD-rdf-mt-20031010/
http://www.disobey.com/detergent/2002/sw123/
http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222/
http://jena.sourceforge.net/javadoc/index.html
http://jena.sourceforge.net/tutorial/RDF_API/index.html
http://www.w3.org/TR/rdf-primer/
http://jena.sourceforge.net/tutorial/RDQL/index.html
http://mobile.act.cmis.csiro.au/sms2/xml/Address-Book-Samples.asp
http://logicerror.com/semanticWeb-long
http://www.spacedoutinc.org/DU-13/ComputersBlake.html
http://jena.sourceforge.net/ontology/index.html
http://www.extremeprogramming.org/rules/userstories.html
http://www-db.stanford.edu/~backrub/google.html

	�
	Steven E. Matuszek
	A paper submitted to the
	Computer Science Electrical Engineering Department
	in partial fulfillment of the requirements for the M.S. degree at
	University of Maryland Baltimore County
	December 7, 2003��some revisions March 7, 2004
	Abstract
	Contents
	Introduction to the architecture
	Linux, Apache, and MySQL
	Java servlets
	Jena

	Orac’s four-story architecture
	Teach Orac ideas
	Tell Orac facts
	Ask Orac a question
	Maintain Orac

	Summary of important Java classes
	Conclusions
	Observations on the domain
	Observations on the architecture
	Future work

	Final conclusion
	References

